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Abstract. Using a potential model for the surface of a metal and the revised Brandt- 
Reinheimer enhancement factor r ( n ) ,  we have calculated the electron wavefunction, the 
two-dimensional angular correlation and the lifetime of 2y annihilation from the AI( loo), 
A1(110), Al(111) and Cu(121) surfaces. We conclude that (i) the momenta of the electrons 
are filtered by the suridce potential; (ii) the momentum distribution of 2y annihilation is 
greatly constricted for both the parallel and perpendicular directions to the surface; (iii) it 
is possible to obtain simultaneously the observed isotropic angular correlation curve and the 
long lifetime of the positron surface state; and (iv) within a reasonable range of our model 
parameters, the isotropy of the angular correlation curve is rather insensitive to the par- 
ameter values. Our results are consistent with experiment. 

1. Introduction 

Over the last decade there has been a spectacular growth in surface science [ 11. The loss 
of periodicity in one direction results in a change in electronic states near and at the 
surface. In addition, due to the lack of nearest neighbours in one direction there will be 
a reconstruction of the outer atomic planes at the surface. In general, the surface has the 
following effects on the electronic structure: (i) the local density of states N ( E , x )  
depends on x near the surface (where E is the energy of the electron and x the axis 
perpendicular to the surface); (ii) there is some charge redistribution near the surface; 
and (iii) the surface potential gives rise to an energy-dependent phase shift in the 
wavefunction and introduces an energy dependence in the normalisation constant. 
Therefore the momentum distribution of the electrons and the surface electronic prop- 
erties differ from those in the bulk. Especially near the surface the local Fermi surface 
is an ellipsoid with the longer axes parallel and the short axis perpendicular to the surface, 
compared with the spherical Fermi surface in the bulk. Positron annihilation offers a 
unique way to observe the momentum distribution of electrons in solids [ 2 ] .  As a result 
the two-dimensional angular correlation of the 2y annihilation radiation ( 2 ~  ACAR) of 
electron-positrons at the surface is expected to be different from that inside the crystal. 

In this paper we propose a potential model to calculate the electron wavefunction. 
Using the positron wavefunction given by Barton [3], we calculate the two-dimensional 
angular correlation momentum distribution and the lifetime of positron-electron 
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annihilation from A1(110), A1(100), Al(111) and Cu(121) surfaces. We also adopt a 
revised Brandt-Reinheimer enhancement factor [4] in an effort to calculate the positron 
lifetime at these surfaces. Our results agree very well with experimental data. 

Lynn and co-workers [5] measured the two-dimensional angular correlation of the 
2y annihilation from a clean Al(100) surface, and discovered that it is substantially 
distinct from the bulk. Howell et a1 [6] derived similar conclusions from their measure- 
ments Of 2D ACAR from a copper surface. However, the data can not be explained [5]  by 
the early theoretical work based on either a positron bound in a surface state or a 
positronium atom weakly bound to the surface [7-111. A strong anisotropy is predicted 
in [7-101 which is not in agreement with experiment. Based on the positronium atom 
model Platzman and co-workers [ l l ]  calculated a much narrower shape for the ZD ACAR 
than that observed. 

Most recently, Brown and co-workers [12] also considered the present problem. 
Their angular correlation curves were obtained using an independent particle model 
(IPM) and are quite isotropic, but they obtained the perpendicular FWHM larger than the 
parallel FWHM, contrary to our present results. Since we used a similar IPM model we 
must identify the differences between their calculations and ours. The reasons for these 
different results are as follows: Brown and co-workers used a different procedure [13] 
to calculate the electron wavefunction; from the parametrised form of the electron 
density without the Friedel oscillations to which the angular correlation curve is quite 
sensitive, they calculated the electron potential at the surface and then solved the 
Schrodinger equation numerically to obtain the one-electron wavefunction. Thus an 
enhancement of high-perpendicular-momentum components of the electron was intro- 
duced in [ 121 by omitting the Friedel oscillation from the parametrised electron density 
and a different electron potential. Their results using a different approach, namely the 
mixed density approximation (MDA), show a larger anisotropy than ours. Although the 
MDA includes electron-positron correlations, it is not suitable for the case of fast spatial 
variations in the electron density near the surface [ 141. The local momentum distribution 
approximation used in [12] with a local Fermi momentum does not represent correctly 
the local electronic momentum distribution. This is so since the local electron momentum 
distribution does not only depend on the local electron density but also depends on the 
total profile of the electron density, such as the gradient of the density. This is especially 
important for a surface where there is a fast variation region of density. Besides, in MDA, 
a somewhat arbitrary cut-off must be used in the calculation of ACAR and the results are 
quite sensitive to this choice. That is why Brown and co-workers always obtain a 
substantially larger perpendicular FWHM than parallel FWHM for the ACAR. Based on 
their calculations Brown and co-workers concluded that their model with reasonable 
parameters could not give an isotropic momentum distribution. Seeking an alternative 
explanation for the experimental results, they [15] also calculated the ACAR of a positron 
localised in a surface monovacancy with the MDA. For this situation one meets the same 
problems as discussed above. The major question is why the electron annihilating 
with a positron bound perpendicular to the surface can produce an isotropic angular 
correlation distribution. In this paper we will provide an answer to this. 

There are several methods for calculating the electronic structure of surfaces. Lang 
[ 161, using the jellium model, calculated self-consistently the surface electronic structure 
of simple metals like Na and Al. Although it gives a quite good value for the electronic 
work function, some local properties, such as the tail of the electron wavefunction, the 
dipole barrier and the chemical potential are not properly treated in this method. In the 
transition metals where the d-electrons dominate the bonding, the tight-binding (LCAO) 
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Figure 1. Schematic representation 
of ZD ACAR coming from the metal 
surface. 
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Figure 2. The model electronic 
potential V ( x ) ,  the electron density 
n(x)  and positron wavefunction 
q + ( x ) .  Wis the FermienergyE,plus 
the work function Vo; no the bulk 
electron density, q+,,,dx the maxi- 
mum value of q + ( x )  and xo is a par- 
ameter of t#+(~). Region (ii) is the 
transitional region of width d. 

method provides a useful starting point [ 171. The exact surface potential is however very 
complicated and is still not known very accurately, so instead of using this we use a 
potential model that can be treated as the parametrised form of the real effective surface 
potential, to calculate the electron structure of surface. This potential model formalism 
is especially appropriate for calculating the tail of the wavefunction for electrons near 
the surface which dominates the electronic as well as other properties. In 00 2 and 3 we 
discuss in detail the potential model and the dependence of 2~ ACAR distribution on the 
parameters of the potential model. In the following atomic units are used, i.e., h = 1, 
m = 8, e2 = 2. 

2. Theoretical formulation 

There are several factors influencing the momentum distribution of the 2 y  annihilation 
of the electron-positron. Figure 1 shows how these factors affect the 2~ ACAR. First 
the surface potential can be treated as a filter similar to an electrical filter. The bulk 
wavefunctions of electrons are filtered into the surface wavefunctions by the surface 
potential filter. At this time, both of the higher electronic momenta perpendicular and 
parallel to the surface are partly reduced by the surface potential, especially for the 
perpendicular momenta. Then the electron in surface wavefunction annihilates with the 
positron bound to the surface, and the 2~ ACAR comes out. 

In discussing theoretically 2~ ACAR, the key is to obtain the surface electronic 
structure, i.e., the tail of the wavefunction for the electrons. We first discuss the solution 
of the Schrodinger equation. The positive direction of the x-axis is set as perpendicular 
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to the metal surface, The potential model V(x, y ,  z )  chosen is shown in figure 2 and has 
the following analytic form: 

Table 1. The relevant parameters. 

AI(100) 0.8551 0.3243 [I91 1.1794 3.827 4.6015 3.75 3.35 
AI(110) 0.8551 0.2985[20] 1.1537 2.706 6.5101 3.7 3.55 
Al(111) 0.8551 0,3118[19] 1.1669 4.418 4.6676 3.65 3.7 
Cu(121) 0.5145 0.3329 [21] 0.8474 2.785 4.15" 3.2a 

a Because no data are available for Cu(121), we have chosen b and c from Cu(ll1) data in 
[31. 

w ,  Y , 2) = V(X> (1) 
where 

X S O  region (i) 

V(x) = Wx/d O < x < d  region (ii) ( 2 )  
x > d  region (iii). 

Here regions (i) and (iii) are the metal and the vacuum, respectively. Region (ii) is the 
transitional region of width d,  which determines the selvedge width and is the only 
adjustable parameter in the potential model. The parameter d is typically of the order 
of the planar spacing at the surface. To the authors' knowledge, there are no data 
available for the selvedge width of the surface. In this paper, therefore, we choose the 
value of d in three different ways: (i) dis chosen to be equal to the topmost planar spacing 
at the surface and is represented by d,: (ii) d is chosen to be the average length of the 
primitive translation vector of the primitive unit cell on the topmost plane at the surface 
and is represented by d,; and (iii) d is used as an adjustable parameter to fit the 
experimental data. W is equal to the Fermi energy Ef plus the work function Vo,  which 
is surface-dependent. Some relevant parameters are given in table 1. 

In this potential model approximation, the three-dimensional Schrodinger equation 

can be simplified into a one-dimensional equation. In the direction parallel to the surface 
the electronic wave-function keeps the same form as in the bulk and 

Therefore we get the one-dimensional Schrodinger equation 

where 

- V"(Y) + V(x, y , z ) W ( r )  = EY((r) 

W(r) = exPWyY + kz2)1v(x). 

- (d2/dx2>v(x) + V(x)v(x) = ExNx)  

Ex = E - k; - k l .  

- (dz/dxz)$,l(x) = Exvl(x) .  (7) 

(3) 

(4) 

( 5 )  

(6) 
In region (i) we choose v(x) + vl(x) and get 

Similarly, for regims (ii) and (iii) we have 
- (d2/dx2>v2(x> + (Wx/d)W*@) = EXV2(X) 
- (d2/dx2)v&) + Wv3(x) = ExV3(X). 

(8) 
(9) 
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Table 2. The first eleven terms of a, and b,. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
0 

W/6d 
E:/24 

-E$ 

- WEx/30d 
(W2/d2  - E:/4)/180 

(-7W2E,/6d2 - E:/24)/1680 
(W3/2d3 - 2WE2/7d)/6480 
(5W2E:/dZ - E:/20)/181440 

WEt/560d 

0 
1 
0 

W/12d 
EZ/120 

- ELI6 

- WEx/120d 
(W2/dZ  - E:/10)/504 

(13W2E,/d2 - E:/4)/9076 
(W3/d3  - WE:/4d)/45360 

WEt/3360d 

Solving equations (7-9) we obtain the electron wavefunction as follows 

ql(x)  = sin(k,x + 9) 
qZ(x) = {k , / [ (cok , )2  + c!]"~} (CO E anx" + ~1 5 bnxn ) (10) 

n=O n = l  

q 3 ( x )  = {k,/[(~~k,)~ + ~ ~ ] ~ / ~ } e x p [ - k : ( x  - d ) ]  

k: = (W - E,)'12. (11)  

where 1 
k ,  = 2 (E,)'12 

a, and b, are the coefficients of the series solution to equation (8), and obey the following 
recurrence formulae: 

a. = 1 a l  = O  a2 = -E,/2 bo=O b l = l  b2=0 .  (12') 
Table 2 gives the first eleven terms of a,  and b,. The phase shift q(k , )  and the 

coefficients co, c1 are determined by the boundary conditions of the wavefunction at x = 
Oandx = d ;  

Vl(0) = V'2(0) V i ( 0 )  = Vi(0) (13) 

co = ( nbndn-' + k: 2 b n d n )  

~I 

tan rp ( k,) = k,co/c 1. 
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Table 3. FWHM for AI(100) with variations in d and x o .  The data labelled d with s represent 
the value of the topmost planar spacing at the surface. The data labelled a represent the 
average length of the primitive translation vector of the primitive unit cell on the topmost 
plane. FWHMX and FWHMY are the FWHM of Z(p,) and Z(py ) ,  respectively. AFWM = 
FWHMY-FWHMY. 

d 3.83s 3.83s 3.83s 3.83s 3.83s 3.83' 3.83s 7.65 1.91 4.60a 4.60a 
%Id 0 1/16 114 112 314 15/16 1 112 112 112 314 
FWHMX(mrad) 8.17 8.10 7.89 7.60 7.32 7.15 7.14 6.94 7.92 7.46 7.13 
FwHMy(mrad) 8.21 8.14 7.96 7.78 7.69 7.65 7.64 6.36 8.23 7.53 7.40 
AFWHM 

(%) 0.5 0.4 0.8 2.4 4.7 6.4 7.1 -9.1 3.8 0.9 3.7 
FWHMY 

Table 4. FWHM and lifetimes for different surfaces. The data labelled d with s represent the 
value of the topmost planar spacing at the surface. The data labelled a represent the average 
length of the primitive translation vector of the primitive unit cell on the topmost plane. 
FWHMX and FWHMY are the FWHM of I@,) and Z(py),  respectively. AFWHM = FWHMY-FWHMX. 

AI(100) AI( 1 10) Al(111) Cu(121) 

d 

FWHMX (mrad) 
FWHMY (mrad) 
AFWHM 

xold 

(%I FWHMY 

t(PS) 
Experiment 
FWHMY (mrad) 
FWHMY (mrad) 
t ( P S )  

3.83s 4.60" 

7.60 7.46 
7.79 7.53 

2.4 0.9 

112 112 

574 609 

7.1 t 0.5 [5] 
7.1 t 0.5 [5] 

580 t 10 [25] 

2.71' 6.51a 4.42' 4.6Ia 

7.83 7.17 7.59 7.55 
8.13 6.86 7.74 7.66 

1/2 112 112 112 

3.7 -4.7 1.9 1.4 - 

551 580 558 556 

8.0 t 0.5 [5] 
8.0 t O S  [5] 

6.9 [24] 
6.4 [24] 

2.79s 
0 
6.53 
6.32 

-3.2 

8.0 t 0.2 [6] 
6.6 f 0.2 [6] 

The electron density obtained is shown in figure 2 together with the electronic 
potential model and the positron wavefunction q+(x).  The calculated electron density 
is remarkably close to the self-consistent result of Lang and Kohn [22] and both show 
Friedel oscillations. 

We have recently become aware of work by Sahni and co-workers [23], who have 
calculated surface dipole barriers, work functions, surface energy, the density of states 
and the jellium edge by the same model potential as that used in this paper. For metallic 
densities, the results of the surface dipole barriers, work functions, surface energies and 
the density of states are also remarkably close to the self-consistent results of Lang and 
Kohn. 

Having obtained the electron wavefunction we now use the positron variational 
wavefunction given by Barton 131. 
q + ( x j  = (2 /b) (b  + 2 ~ ) - ~ / ~ { 8 ( - ~  + xo)a exp[(x - xo)/c] 

a = bc/(b + c) 

+ 8(x - xo)(x - xo + a)  exp[( -x + xO)/b]} (161 

where the parameters b and c depend on both the bulk material and the surface, and are 
given in table 1. 8 is the usual step function, and xo is a parameter to fit experimental 
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Table 5.  FWHM for Cu(121) with variations in b ,  c,  d andxo. FWHUT and F W H M ~  are the FWHM 
of [(p,) and I @ , ) ,  respectively. AFWHM = FWHMy-FWHUT. 

AFWHM 
FWHUT -MY FWHMy 

b C d xo/d (mrad) (mrad) (%) 

4.15 3.2 2.79 0 6.53 6.33 
4.15 3.2 2.79 1/16 6.49 6.30 
4.15 3.2 2.79 1/2 6.19 6.18 
4.15 3.2 1.39 0 6.51 6.36 
4.15 3.2 0.35 0 6.44 6.36 
4.15 3.2 0.70 0 6.47 6.36 
4.15 3.2 0.001 0 6.40 6.35 
2.08 1.6 0.001 0 7.23 5.90 
1.73 3.2 0.001 0 6.81 6.40 
1.73 1.33 0.001 0 7.79 5.81 
1.38 1.07 0.001 0 8.74 5.73 
Experiment [6] 8.0 t 0.2 6.6 * 0.2 

-3.2 
-3.0 
-0.2 
-2.4 
-1.3 
-1.7 
-0.8 
-22.5 
-6.4 
-34.0 
-52.5 
-21.2 

data and is given in tables 3, 4 and 5 .  As will be seen below, the result for the angular 
correlation curve is rather insensitive to the actual value of xo. 

Using the independent particle approximation [26] we have calculated the momen- 
tum distribution p'Y(p) of the annihilating positron-electron 

p2'(p) =constant x 2 drexp(- ip . r )Y+(r )Yi( r )  I *  
OCC i II (17) 

wherep is the total momentum of 2y photons. In equation (17), there are two kinds of 
important common integrations, INTI ( p x ,  n) and I N T ~  ( p x ,  n) ,  which are related to the 
transitional region as follows: 

dx  exp( - i pxx)xna  exp[(x - xo)/c] 

xb'+l-m n! n+ 1 

= a  exp(-ip,xo) 2 ( - 1 ) m - l  
m = l  

- X 0  n! 
(1/c-ipX)" (n + 1 - m)!  

- ( - 1 ) n a  exp (--) 
(l/c - ipx)n+l 

dx  exp( -ipxx)xn exp[( --x + x,)/b] 
x o  

where n = 0 ,1 ,2 ,3 ,  . . . . 
The 2D angular correlation Z(px, p y )  is 
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Figure 3. Electron wavefunction & ( x )  with dif- 
ferent momenta k, in the transitional region of an 
Al(100) surface. The labelling of the curves (1, 
314, 112, 114 and 1/64) represents their ratios af 
kf to k:.  

Figure 4. Phase shift rp(E,) of the electron 
wavefunction near an Al(100) surface. 

and the one-dimensional angular correlation Z(px) and Z(p,) are respectively 

(21) 

I ( P J  = j O x , P y )  dPx. (22) 

1/2 = A = j-; dx 1 V + ( 4 I 2 ~ [ n ( 4 l  

4 x 1  = (l/n2> j (k: - k:)lV(kX,x)l2 dkx 

The positron lifetime z and the total annihilation rate A are calculated with the local 
density approximation [27],  

(23) 

(24) 
k i  

0 

where n is the electron density and kf is the Fermi momentum. For the enhancement 
form r(n) we use [4] a revised Brandt-Reinheimer form 

where the density parameter r, is equal to (4nn/3)-lI3 and rsc is a cut-off parameter in 
the low-density region. When r,, is set equal to infinity, r ( n )  in equation (25) becomes 
the Brandt-Reinheimer form [27]. The Brandt-Reinheimer form gives a poor upper 
limit of 500 ps for the positron lifetime in vacuum, which is contrary to the experimental 
positron lifetime at the surface. With this revised form we need only to use a sufficiently 
large r,, to obtain the correct positron lifetime in the large open-volume defect at the 
surface and still keep all previous calculations for positron lifetimes in the bulk, vacancies 
and other small open-volume defects unchanged. 

r ( n )  = {2B[r,, - r,(n)] + 134n) x lo9 s-l  (25) 
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3. Results and discussion 
In figure 3 we show the electron wavefunction q z ( x )  for different values of the momen- 
tum k, in region (ii) of an Al(100) surface. It is easy to see that, for low momentum k,, 
&(x) decays more rapidly than for higher k,, i.e., only electrons with higher per- 
pendicular momentum have a large probability to pass through the transitional region. 
At the same time most of the electrons with higher k, usually have lower parallel 
momenta because the largest total momentum of the electron cannot be larger than the 
Fermi momentum. On the one hand, the electronic wavefunction with higher parallel 
momentum (and consequently lower perpendicular momentum) decays more rapidly 
than those with a lower parallel momentum, This causes the parallel part of the 2~ ACAR 
to become narrower. On the other hand, unlike the parallel momentum of the electron 
which is conserved and is a good quantum quantity, the perpendicular momentum of 

px (mrad) px imradl 
Figure 5. (a) Theoretical two-dimensional angular correlation distribution I(&, p,)  of 2y  
annihilation near an Al(100) surface. d = 3.827 au andx = 1.914 au. (b) Calculated contour 
plot of I ( p x , p y )  in figure 5(a). 

the electron is not conserved and is reduced by the surface potential in the transitional 
region, narrowing the perpendicular part of the 2D ACAR. The majority of the positron- 
electron annihilation occurs in the region where both the distribution of perpendicular 
and parallel momenta of the electron is narrower than those in the bulk, and the 
distribution of the perpendicular momentum of the electron is much narrower than it is 
for the parallel one. In other words, in this region the momentum distribution of the 
electrons has a narrower ellipsoid shape with the long axes parallel and the short axis 
perpendicular to the surface. Therefore in both directions the 2~ ACAR will be compressed 
and its shape will be nearly isotropic in spite of the presence of a positron near the outer 
surface. 

The phase shift q(E, )  of the electron wavefunction for Al(100) is shown in figure 4. 
At E, = 0, q ( 0 )  = JC. In our linear potential model for the surface, q ( E , )  has a nearly 
linear dependence on E,/Ef. For small values of E,, q(E, )  - JC and ql(0) are also small. 
According to the above discussion, this again means that 2D ACAR is compressed in both 
directions. 

The theoretical 2~ ACAR Z(p,,py) near the Al(100) surfaces is shown in figure 5(a) .  
It is quite isotropic, which is consistent with experiment [5].  Figure 5(6)  shows contours 
of the same data as (a ) .  In the central part of the contours, the parallel part of Z(p,, p y )  
is larger than the perpendicular part, in good agreement with experiment. To the authors’ 
knowledge, no previous calculations have provided this result, but have given that the 
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- 0  - 4  0 4 0 

p imrodi  

Figure 6.  One-dimensional angular 
correlation I@,) for momentum par- 
allel to AI(100) surface and I@,) for 
momentum perpendicular to the sur- 
face. The curve through the crosses 
represents I@,). 

perpendicular part of the Z(px, p,) is always larger than the parallel part. In the outer 
part of the (px, p,) plane we find that the perpendicular part of Z(px, p y )  is larger than 
the parallel part, again in agreement with experiment. To show the shape of Z(px, p,) 
more clearly, we present the ID ACAR momentum distribution along p x  and p ,  in figure 
6. In table 3, we give the FWHM of the ID ACAR along the perpendicular direction FWHMX 
and along the parallel direction F W H M ~  for the Al(100) surface for different choices of d 
andxo. It is easily seen that: (i) for most of the values of d andxo listed in table 3, F W H M ~  
is larger than FWHMX, except when d = 7.6540 and xo = d/2. (ii) For reasonable values 
of d and xo, the isotropy of Z(px, p,) is not very sensitive to xo. (iii) When d is chosen to 
be equal to d,, the average length of the primitive translation vector of the primitive 
unit cell on the topmost plane at the surface, both results (FWHMX = 7.4606 mrad and 
F W H M ~  = 7.5341 mrad when xo/d = t ,  and FWHMX = 7.1368 mrad and F W H M ~  = 
7.4026 mrad when xo/d = 2) are completely consistent with the experimental value 
7.1 i 0.5 mrad [5]  for both directions in the Al(100) surface. In processing the exper- 
imental data in [5,28], the p ,  (parallel) = 0 point was chosen to minimise the anti- 
symmetric component of the data, and varying the p x  (perpendicular) = 0 position by 
k0.15 mrad leads to at most a 10% anisotropy with the parallel component being larger. 
The experimental FWHM has a slightly different value than in [ 5 ] ,  if a different method 
of data processing is used. Our results are therefore in good agreement with experiment. 

We show the FWHM for the different surfaces in table 4. For Al(110) there are two 
different experimental values. In [ 5 ] ,  both FWHMS are 8.0 +- 0.5 mrad. In [24] FWHMX = 
6.9 mrad and FWHMY = 6.4 mrad. If we choose d = d,, the calculated values are in 
agreement with the data in [5]. If d = d,, the calculated values are consistent with the 
data in [24]. For the choice of d we need more information to decide which one is to be 
preferred, For Al(100) and Al(111), both choices of d give similar results. 

For the Cu(121) surface, we have not found the positron parameters b and c, so we 
use b and c from the data of the Cu(l11) surface in [3] or take them as adjustable 
parameters. In table 5 ,  we list the FWHM as a function of b and c. The experimental data 
for Cu(121) is substantially different from the value for Al. The theoretical FWHM in the 
bulk of Cu is 7.40 mrad for one valence electron per atom, while for Cu(121) surface the 
experimental FWHMX = 8.0 k 0.2 mrad [6] and FWHMY = 6.6 k 0.2 mrad. The exper- 
imental FWHM in the bulk of Cu is 10.2 mrad [29]. In this case the contribution of the d 
electron must be taken into account. Further work on this problem is currently in 
progress and will be discussed elsewhere. 
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In table 4 we also show the positron lifetime calculated for the three surfaces of A1 
with rsc = 20 in equation (25). It is easy to see that this choice corresponds to a density 
of n(r,,) = 0.298 x which is 0.11% of the bulk density. The theoretical lifetime is 
now in very good agreement with the experimental result. At the same time this choice 
does not change all previous calculations for positron lifetimes in bulk and in small open- 
volume defects because of the very low cut-off for the electron density. A more realistic 
enhancement factor r (n )  would be one where r (n )  behaves smoothly rather than 
discontinuously. 

In our potential model formalism, the linear potential V(x)  in region (ii) (see equation 
(2)) can be replaced by a polynomial to account for a different surface of a different 
metal. Besides the shape of V ( x ) ,  the width d and the work function V o  are the most 
important factors which affect the shape of the 2D ACAR. For the different surfaces of the 
same metal or for a different metal, Vo and d will be changed. Therefore the shape of 
the ZD ACAR for different surfaces will be different. The larger the values of Vo and d ,  
the narrower is the shape of the 2~ ACAR. 

More recently, Rubaszek and co-workers [30] claimed that the strong electron- 
positron correlations are responsible for the isotropic experimental result, but the 
enhancement factors used in their paper are obtained from the bulk electron and bulk 
positron states, which are not suitable to deal with the surface problem and result in a 
much narrower shape of the 2~ ACAR distribution than the experimental one. We believe 
that the exact electron-positron correlation enhancement does not change the isotropic 
result appreciably for the simple metal surface. 

In summary, we have shown that our potential model can give a correct description 
that electrons with different momenta are filtered by the surface potential. Near the 
surface the local Fermi surface is an ellipsoid with the longer axes parallel and the short 
axis perpendicular to the surface. In this formalism the 2~ ACAR for both directions 
should be compressed; in some cases its shape is almost isotropic, while in others it may 
be anisotropic. For different metals and different surfaces the constriction of the 2~ 
ACAR are different. In the present work we have shown that it is possible to obtain 
simultaneously the observed isotropic angular correlation curve and the long lifetime of 
the positron surface state. For a reasonable range of the parameters in our model, the 
near isotropy of the angular correlation curve is rather insensitive to the value of xo. 
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